Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 19(10)2022 05 11.
Article in English | MEDLINE | ID: covidwho-1847333

ABSTRACT

The SARS-CoV-2 can spread directly via saliva, respiratory aerosols and droplets, and indirectly by contact through contaminated objects and/or surfaces and by air. In the context of COVID-19 fomites can be an important vehicle of virus transmission and contribute to infection risk in public environments. The aim of the study was to analyze through surface sampling (sponge method) the presence of SARS-CoV-2 in public and working environments, in order to evaluate the risk for virus transmission. Seventy-seven environmental samples were taken using sterile sponges in 17 animal farms, 4 public transport buses, 1 supermarket and 1 hotel receptive structure. Furthermore, 246 and 93 swab samples were taken in the farms from animals and from workers, respectively. SARS-CoV-2 detection was conducted by real-time RT-PCR and by digital droplet RT-PCR (dd RT-PCR) using RdRp, gene E and gene N as targets. None of the human and animal swab samples were positive for SARS-CoV-2, while detection was achieved in 20 of the 77 sponge samples (26%) using dd RT-PCR. Traces of the RdRp gene, gene E and gene N were found in 17/77 samples (22%, average concentration 31.2 g.c./cm2, range 5.6 to 132 g.c./cm2), 8/77 samples (10%, average concentration 15.1 g.c./cm2, range 6 to 36 g.c./cm2), and in 1/77 (1%, concentration 7.2 g.c./cm2). Higher detection rates were associated with sampling in animal farms and on public transport buses (32% and 30%) compared to the supermarket (21%) and the hotel (no detection). The result of the study suggests that the risk of contamination of surfaces with SARS-CoV-2 increases in environments in which sanitation strategies are not suitable and/or in highly frequented locations, such as public transportation. Considering the analytical methods, the dd RT-PCR was the only approach achieving detection of SARS-CoV-2 traces in environmental samples. Thus, dd RT-PCR emerges as a reliable tool for sensitive SARS-CoV-2 detection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/diagnosis , COVID-19/epidemiology , RNA, Viral/analysis , RNA, Viral/genetics , RNA-Dependent RNA Polymerase , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics
2.
Front Public Health ; 10: 840996, 2022.
Article in English | MEDLINE | ID: covidwho-1809617

ABSTRACT

The aim of the present study is to assess saliva as a reliable specimen for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection by real-time reverse transcription-PCR (RT-PCR), especially in community mass screening programs. The performance analysis considered 1,221 total samples [nasopharyngeal (NP) swabs and corresponding saliva], tested by means of a reference diagnostic real-time RT-PCR assay. Conflicting results were further investigated with a second, more sensitive, reference assay. Analysis of agreement showed a good concordance (95.82%), with a k coefficient value of.74 (p < 0.001); moreover, a follow-up analysis revealed the presence of viral gene targets in saliva samples at the time point the corresponding NP swabs turned negative. Data obtained prove the reliability of this alternative biofluid for SARS-CoV-2 detection in real-time RT-PCR. Considering the role of saliva in the coronavirus disease 2019 (COVID-19) transmission and pathogenesis, and the advantages in the use of salivary diagnostics, the present validation supports the use of saliva as an optimal choice in large-scale population screening and monitoring of the SARS-CoV-2 virus.


Subject(s)
COVID-19 , COVID-19/diagnosis , Humans , Nasopharynx , Reproducibility of Results , SARS-CoV-2 , Saliva , Specimen Handling/methods
3.
Future Sci OA ; 7(7): FSO711, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1302056

ABSTRACT

SARS-CoV-2, the causative agent of the COVID-19 pandemic, has rarely been associated with transmission from humans to animals (reverse zoonotic transmission). In this retrospective study, the authors reviewed data obtained from 236 animals, including buffaloes, goats/sheep, horses, carrier pigeons, rabbits, hens, snakes, pigs and cows that were screened for SARS-CoV-2 infection because they had been in contact with their SARS-CoV-2-positive breeder for at least 2 weeks. None of the tested animals were found to be positive. The authors' findings suggest that the risk of reverse zoonotic transmission among bred animals and SARS-CoV-2-positive breeders is very low or nonexistent. Additional studies are warranted.

4.
Front Public Health ; 9: 649781, 2021.
Article in English | MEDLINE | ID: covidwho-1231426

ABSTRACT

The onset of the new SARS-CoV-2 coronavirus encouraged the development of new serologic tests that could be additional and complementary to real-time RT-PCR-based assays. In such a context, the study of performances of available tests is urgently needed, as their use has just been initiated for seroprevalence assessment. The aim of this study was to compare four chemiluminescence immunoassays and one immunochromatography test for SARS-Cov-2 antibodies for the evaluation of the degree of diffusion of SARS-CoV-2 infection in Salerno Province (Campania Region, Italy). A total of 3,185 specimens from citizens were tested for anti-SARS-CoV-2 antibodies as part of a screening program. Four automated immunoassays (Abbott and Liaison SARS-CoV-2 CLIA IgG and Roche and Siemens SARS-CoV-2 CLIA IgM/IgG/IgA assays) and one lateral flow immunoassay (LFIA Technogenetics IgG-IgM COVID-19) were used. Seroprevalence in the entire cohort was 2.41, 2.10, 1.82, and 1.85% according to the Liaison IgG, Abbott IgG, Siemens, and Roche total Ig tests, respectively. When we explored the agreement among the rapid tests and the serologic assays, we reported good agreement for Abbott, Siemens, and Roche (Cohen's Kappa coefficient 0.69, 0.67, and 0.67, respectively), whereas we found moderate agreement for Liaison (Cohen's kappa coefficient 0.58). Our study showed that Abbott and Liaison SARS-CoV-2 CLIA IgG, Roche and Siemens SARS-CoV-2 CLIA IgM/IgG/IgA assays, and LFIA Technogenetics IgG-IgM COVID-19 have good agreement in seroprevalence assessment. In addition, our findings indicate that the prevalence of IgG and total Ig antibodies against SARS-CoV-2 at the time of the study was as low as around 3%, likely explaining the amplitude of the current second wave.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunoassay , Immunoglobulin M , Italy , Luminescence , Sensitivity and Specificity , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL